Evaluation of three BRDF models’ performance using spaceborne POLDER snow data

نویسندگان

چکیده

å†°é›ªåœ¨çŸ­æ³¢åŒºåŸŸå ·æœ‰å¾ˆå¼ºçš„å„å‘å¼‚æ€§åå°„ç‰¹å¾ï¼Œå¯¹å ¨çƒèƒ½é‡å¹³è¡¡åŠæ°´å¾ªçŽ¯ç­‰æœ‰é‡è¦ä½œç”¨ã€‚ç›®å‰ï¼Œå›½å† å¤–å­¦è€ å‘å±•äº†ä¸€ç³»åˆ—åº”ç”¨äºŽå†°é›ªçš„äºŒå‘æ€§åå°„åˆ†å¸ƒå‡½æ•°BRDF(Bidirectional Reflectance Distribution Functionï¼‰æ¨¡åž‹ï¼Œå ¨é¢æ¯”è¾ƒå’Œè¯„ä¼°è¿™äº›æ¨¡åž‹å¯¹æ˜Ÿè½½å¤šè§’åº¦é¥æ„Ÿäº§å“çš„ä¸šåŠ¡åŒ–æ¨¡åž‹é€‰æ‹©æœ‰é‡è¦å‚è€ƒä»·å€¼å’ŒæŒ‡å¯¼æ„ä¹‰ã€‚æœ¬æ–‡åŸºäºŽå ¨çƒPOLDER冰雪多角度反射率数据,选取3ä¸ªæ¨¡åž‹ï¼ŒåŒ æ‹¬æ ¸é©±åŠ¨ã€åŠç»éªŒçš„MODIS业务化RTLSRæ¨¡åž‹ã€æ¸è¿›è¾å°„ä¼ è¾“ç‰©ç†æ¨¡åž‹ART以及新发展的RTLSRS æ¨¡åž‹è¿›è¡Œäº†å ¨é¢æ¯”è¾ƒåˆ†æžï¼Œç ”ç©¶ç»“æžœè¡¨æ˜Žï¼šï¼ˆ1)在拟合所有POLDER数据时,RTLSRSæ¨¡åž‹éƒ½å ·æœ‰æœ€é«˜ç²¾åº¦ï¼Œå¯¹äºŽå•ç»„çº¯é›ªæ•°æ®ï¼ŒRTLSRSæ¨¡åž‹çš„æœ€å°äºŒä¹˜æ‹Ÿåˆçš„å‡æ–¹æ ¹è¯¯å·®ï¼ˆRMSE)比ART模型降低了45.45%ï¼Œä» ä¸ºRTLSR模型的18.46%。对于非纯雪数据,RTLSRS模型与RTLSRæ¨¡åž‹çš„æ‹Ÿåˆèƒ½åŠ›æ€»ä½“å·®åˆ«ä¸å¤§ï¼Œä½†å ¶RMSE比RTLSR模型降低了67.5%,ART模型的精度最差。(2)虽然RTLSRS可以高精度拟合所有数据,但该模型拟合纯雪(R2=0.969,RMSE=0.012)精度较优于非纯雪(R2=0.926,RMSE=0.013)。(3)对RTLSRSæ¨¡åž‹è¿›è¡Œç®€åŒ–ï¼Œä» ä¿ç•™å ¶å„å‘åŒæ€§æ ¸å’Œé›ªæ ¸ISM(Isotropic-Snow Model),验证结果表明:简化后的模型能够很好地表征雪的二向散射能力,使用POLDERå ¨éƒ¨çº¯é›ªæ•°æ®è¿›è¡Œæ‹Ÿåˆæ—¶ï¼ŒR2达到了0.949,RMSE为0.034。本文有助于用户在应用冰雪多角度数据时选择更合适的BRDF模型,同时对理解这些模型的误差提供了有价值的参考

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using analytical description of snow BRDF for visible channel calibration

Vicarious calibration using different types of land surface and deep convective clouds is considered as a mode to monitor the sensor performance. Snow cover as the brightest and in many cases spatially uniform surface has a significant potential as a calibration target. Proposed in this presentation approach is based on the creation and implementation of analytical bidirectional reflectance dis...

متن کامل

Simulation of spaceborne microwave radiometer measurements of snow cover from in-situ data and emission models

In this study, spaceborne brightness temperature measurements of snow-covered sparse forest are simulated from a daily data set collected at Sodankylä, Finland during winter 2006-2007. The data set consists of measurement data of soil, snow and air. The atmospheric effects are simulated with two different methods: from measurements near the ground and from balloon-borne radio sounding profiles....

متن کامل

Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-...

متن کامل

Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements

Two months of spaceborne POLDER polarization measurements have been used to generate empirical surface bidirectional polarization distribution functions (BPDF’s). Eleven surface classes have been defined based on a surface classification and a vegetation index. Within each class, the surface polarized reflectance was found rather homogeneous. The surface polarized reflectance is highly anisotro...

متن کامل

A New Brdf Model Based on the Shadowing Theory for Polder Brdf Database

In this paper we introduce a shadowing model for the volume scattering kernel component by land targets, such as vegetation, sand and soil. . The proposed BRDF model for heterogeneous land surfaces consists of three kernels, namely, an isotropic, a geometric and a volume scattering components and the new BRDF models with the shadowing volume kernel has been tested against the POLDER-1 BRDF data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20210010